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and 
(18) 

after having gone through a long algebra, we 
find the expressions for the effective second­
order elastic constants as follows: 

Cll = Cll + 7] (2cll + 2Cl2 + Cm + 2c ll2 ) 

+7]2(-kl1- 2Cl2 + kill + 5cll2 + Cl23 

+tcUll + 2Cll l2 + C1l22 + CIl23) (19) 

Cl2 = Cl2 +7] (-cll - Cl2 + 2C1l2 + C123) 
+ 7]2(Cll +k12 -tclll - ClI2 

(20) 

C44 = C44 +7](cll +2CI2+ C44+ CI44 + 2C166) 

+7]2(-Cll - 2C12 -tc44 +tc1l1 

+3c112 +CI23+ CI44+ 2c166 

+tcll44 + Cl155 + 2Cl255 + CI266)' (21) 

Where CJ.l.V' CJ.l.VA and CJ.l.vH are the second-, 
third- and fourth-order elastic constants of 
crystal in Voigt's notation, respectively, and 
they are expressed in accordance with the 
thermodynamic definition [3]. 

It may be noted that, in equations (19-21), 
the coefficients of the terms in 7] with the 
second- and third-order elastic constants are 
the conventional expressions for the effective 
elastic constants [1, 4-6] and they agree with 
those derived initially by Birch[l] when the 
third-order elastic constants in Birch's defini­
tion are converted into those of more general 
thermodynamic definition. * However, the 
coefficients of the terms in 7]2 in equations (20) 
and (21) are at variance with ones given by 

*The relations between the C"vA defined by Briigger 
(cI:{~A) and those by Birch (cI:{tA) are: c1r. = 6c11" Crr2 
= 2cf12' c1{3 = c1J3, c~;. = k~J. , crI. = tcfJ., and cfiG 
= kfJ.. It is noted that the relation between Birch's C'5R 
and Briigger's Cm should be as given in this paper, 
provided C'56 term in the expression of the strain energy 
is [tC.5.(17.21723173. +1721173217.3)] ' However, if the term in 
the expression of the strain energy is [c.5.( 'l).21723173. + 
172117321713)] as in Birch's original paper (e.g. equation 12 
of[ I]), the relation should be ~;. = t~J •. 

Ghate[6]. In light of the present analysis, the 
writer believes that the minus signs of the 
quantities Cll and Cl2 found in the 7]2 term of 
Ghate's equation (23) should have been pLus 
signs. And, as for the expression for C44 , 

the quantity (+icll44) should be found in the 
7]2 term of Ghate's equation (24). 

3. THE ULTRASONIC EFFECTIVE ELASTIC 
CONSTANTS 

The expressions of the effective elastic 
constants as given by equations (19-21) can 
be either the adiabatic or isothermal expres­
sions, and the proper designation of these is 
obviously done b". adding the proper super­
script either's' or 'T' to all the elastic constants. 
The acoustic data resulting from the usual 
acoustic experiments with pressure are neither 
thermodynamically adiabatic nor thermo­
dynamically isothermal quantities, but they 
are 'thermodynamically mixed' isothermal­
adiabatic quantities [7]. Thus, in this section, 
we seek for the expressions of the effective 
elastic constants that may be resulting from 
the ultrasonic-pressure experiments at high 
pressures. 

Recalling the usual behaviors of ultrasonic 
wave velocities in the medium of a cubic 
crystal [8, 9], we note that a longitudinal 
stiffness Cll and shear stiffness C44 result 
directly from measurements of the longitudi­
nal and transverse wave velocities in the [001] 
direction of the crystal, respectively. If one 
measures a transverse wave velocity in [110] 
polarized in the [110] direction, the resulting 
stiffness constant is (cll- C12)/2. Thus, from 
this, one finds immediately the elastic constant 
CI2 as a typical procedure. Following exactly 
the same procedure as the above but subjected 
to hydrostatic pressure, we find the ultrasonic 
effective elastic constants of cubic crystals as: 

Cll(ultrasoniC) = cfl + 7] (cfl + Ca'" + 3BT) 

+ 7]2 (-tcfl + Ca"'+tcdm 

+Ce'"+tcaT+C/-3BT) (22) 
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C 12(ultrasonic) = Cf2 + 'T/ (Cf2 + Cb'" - 3BT) 

+'T/2(- tcf2 + Cb"' + Ce"' + kfb 

- t c aT - C/ + 3BT) (23) 

C44( UltraSOniC) = C44 + 'T/ (C44 + Cc'" + 3BT) 

+'T/2(- k44 + Cc'II +!Cr + Co'" 

Where BT = (cft + 2cf2) 13 and the Cj are 

Ca = CllI + 2CU2 
Cb = 2CU2 + C123 

CC = C144 + 2C166 

Cd = cuu + 2Cll12 

Ce = CU12 + C1l 22 + Cll23 
Cl = CU44 + 2C1l55 
CO = 2C1255 + C1266' 

(24) 

(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 

The superscripts 's ' , 'T' and 'm' designate 
thermodynamically adiabatic, thermodynami­
caLLy isothermaL, and thermodynamically 
mixed elastic constants, respectively. Since 
the Cj are related to the pressure derivatives 
of the linear elastic constants C/LV, these 
relationships are to be found. 

4. RELATION OF PRESSURE DERIVATIVES OF THE 
EFFECTIVE ELASTIC CONSTANTS TO PARTIAL 

CONTRACTIONS OF THE IDGHER-ORDER 
ELASTIC CONSTANTS 

The pressure-dependent second-order 
elastic constants are [7, 10] 

Ctkl(P) = T~[a2 u(v; S, ii)] 
,.. a'T/ij 'T/kl v-

s = const. 
ij =" 

(32) 

where Dijkl = 8ij8kl- 8il8jk - 81k8jl. V denotes 
the volume of crystal at reference state 
characterized by the hydrostatic pressure P, 
and ii is the strain tensor corresponding to an 
arbitrarily deformed state characterized by 
that pressure P. VO is defined by the relation 
(VIV") = >..3, where>.. is a factor given by the 

coordinates of a material point in two reference 
states ai and ai according to (ai/ai) = >... The 
Lagrangian strain tensors corresponding to 
these two reference states are 'T/;j and 'T/t, and 
they are related by 

where E = H >..2_l). Since from thermodyna­
mics (alap)T=-(V/BT)(ataV)T and (a>../aV)o = 
t V D, we find by differentiating equation (32) 
that 

(
aCtkl) = __ 1 [1. {a

z u (V" , S , -ij) .} 
ap T 3ET V" a'T/ jja'T/kl . V" 

S = const. 
ij = O 

} v- ] + Dijkl' 
S = const. S = const. 

ij =O 

(33) 

Note that the first term in equation (33) is by 
definition the zero-pressure second-order 
elastic constants. The second term is, how­
ever, thermodynamically mixed third-order 
elastic constants at zero pressure. Thus, 
from equation (33), it follows that [7] 

(a~;kl) T = -3~{ CLkl + CVklllllllJ + Dijkl (34) 

where 

(35) 

'Ye; is the Griineisen constant, f3 is the coeffi­
cient of volume expansion, and A is the ratio 
of the adiabatic bulk modulus to the isothermal 
bulk modulus and it is given by A = 1 + Tf3;'YG ' 
The quantities given by equation (35) are the 
primary experimental quantities which result 
from the usual u'itrasonic-pressure experi­
ments at low pressures. For cubic crystals, 
equation (35) reduces to: 


